Inhaltsverzeichnis

1. Aufgabenstellung	2
2. Vorbereitung der Aufgabe	
2.1 Zeichnung in AutoCAD	
2.2 Zeichnung in SAM	4
3. Lösung der Teilaufgaben	6
3.1 Geschwindigkeitsverlauf am Schwingenzapfen	6
3.2 Verlauf von <i>v</i> über <i>t</i>	9
3.3 Verlauf von <i>a</i> über <i>t</i>	
3.4 v_{max} & a_{max} für n = 2,5 s ⁻¹ und Getriebe in 2,5-facher Größe	
3.5 Ermittlung der Größtwerte des Ablenkwinkels α	

1. Aufgabenstellung

Es ist folgende zentrische Kurbelschwinge zu entwerfen:

Abb. 1: Aufgabenstellung

Hierfür sind zu ermitteln:

- 1. Der Verlauf der Geschwindigkeit am Schwingenzapfen für 12 gleichmäßig verteilte Kurbelstellungen.
- 2. Der Verlauf von *v* über *t* (abgerollter Kurbelkreis).
- 3. Der Verlauf von *a* über *t*.
- 4. v_{max} und a_{max} für n = 2,5 s⁻¹ und Ausführung des Getriebes in der 2,5 fachen Größe.
- 5. Die Größtwerte des Ablenkwinkels α .

Zur Lösung wurden die Programme AutoCAD und SAM verwendet.

2. Vorbereitung der Aufgabe

2.1 Zeichnung in AutoCAD

Zu Beginn wurde die Kurbelschwinge mit AutoCAD gezeichnet, um die genaue Position des Lagers im Punkt B_0 zu ermitteln. Dies ist erforderlich um die Kurbelschwinge im Getriebe-Analyse-Programm SAM richtig zeichnen zu können. Der Punkt B_0 befindet sich im Schnittpunkt zweier Geraden, welche von den beiden Totlagen im Winkel von 15° zur Mittelsenkrechten der Bewegungsbahn der Schwinge verlaufen. In Abbildung 2 und 3 wird dies verdeutlicht.

Abb. 2: Totlagen der zentrischen Kurbelschwinge

Abb. 3: Ermittlung von B_0

Die lila-farbenen Linien zeigen die Bewegungsbahnen von Kurbel und Schwinge. Die Länge der Schwinge ist gleich dem Abstand B_A (bzw. B_B) zu B_0 und beträgt <u>115.9 mm</u>.

2.2 Zeichnung in SAM

Die Abkürzung SAM steht für "Simulation and Analysis of Mechanisms". Es handelt sich hierbei um ein Programm, mit dessen Hilfe man Bewegungs- und Kraftanalysen an willkürlichen ebenen Getrieben durchführen kann.

Der Ablauf für die Erstellung des Getriebes ist wie folgt:

- 1. Zeichnung des ersten Gliedes (Kurbel) mittels
- 2. Anwählen des Gelenkpunktes 2 \rightarrow Rechtsklick \rightarrow Gelenkpunkt-Eigenschaften
- 3. Einstellungen siehe Abb. 4

Gelenkpunkt-Eigenschaften (Gelenkpunkt 2)	X
Koordinaten Graphauswahl Wiedergabe Optimieren Carthesisch (absolut) Polar (relativ) Carthesisch (relativ) Polar (absolut) Polar (relativ) Schnittpunkt Radius : 30.00000 [mm] Winkel : 0.00000 [deg] Referenzpunkt 1	
Abbre	chen

Abb. 4: Gelenkpunkt 2 - Eigenschaften

Der Radius gibt hier die Länge des Gliedes vom Referenzpunkt (Startpunkt) bis zum Gliedende an.

4. Zeichnung des zweiten Gliedes (Koppel) \rightarrow direkt an Gelenkpunkt 2 ansetzen

5.	Eigenschaften des Gelenkpunktes 3 einstellen (analog 3.) \rightarrow	Radius: 75.0 mm
		Winkel: 0°
		Referenzpunkt: 2

- 6. Zeichnung des dritten Gliedes (Schwinge) \rightarrow direkt an Gelenkpunkt 3 ansetzen
- 7. Eigenschaften des Gelenkpunktes 4 einstellen (analog 3.) \rightarrow Radi

Radius: 115.9 mm Winkel: 255° Referenzpunkt: 3

- 8. Festlager an die Gelenkpunkte 1 & 4 mittels Assetzen
- 9. Antrieb im Gelenkpunkt 1 generieren $\rightarrow \overrightarrow{a}$ anklicken \rightarrow Gelenkpunkt 1 wählen
- 10. Antriebseigenschaften einstellen gemäß Abbildung 5 \rightarrow hinzufügen \rightarrow OK

triebsbeweg	ung				2
Lineair Sinus	Pol.345 Polyn	om 5.Grades <u>D</u> ate	i Spl 4 •	VVI 300.00000 200.00000 100.00000	nkel
Parameter	Wert	Abmessung		0.00000	
Bewegung	360.00001	[deg]		0.00000	1.00000
Zeit	1.00000	[s]			
Intervalle	36	[-]		Vvinkelges	chwindigkeit
Hinzufügen Liste aktueller B Nr Type 1 Linear	Einf	iigen Time 1.00000	Ändern Intervals 36	2,00000 0.00000 0.00000 1.00000 0.00000	1.00000 chleunigung
				-1.00000	1.00000
Lösche	n	Alles lo	ischen	Zwischenablage	Drucken
					OK Abbrechen

Abb. 5: Antriebseinstellungen

Die fertige Zeichnung ist in Abbildung 6 zu sehen.

Abb. 6: in SAM gezeichnete Kurbelschwinge

3. Lösung der Teilaufgaben

3.1 Geschwindigkeitsverlauf am Schwingenzapfen

In dieser Teilaufgabe soll der Verlauf der Geschwindigkeit am Schwingenzapfen, für 12 verteilte Kurbelstellungen, ermittelt werden. Hierzu gleichmäßig müssen die Antriebseinstellungen geändert werden. Man gelangt dorthin entweder über die oberste Menüleiste mittels "Antriebsbewegung" und dann "ändern" oder durch drücken von "STRG" + "M". Hier muss nun lediglich der Wert unter "Intervalle" auf 12 geändert werden, da 12 gleichmäßig verteilte Kurbelstellungen als Bewegungsgrundlage dienen sollen. Danach klickt man auf "Hinzufügen" und die Antriebsfunktion ist vorhanden. Bevor man auf "OK" drückt, muss die bereits vorhandene Antriebsfunktion noch gelöscht werden, da sich sonst beide Funktionen überlagern. Dazu wird diese angewählt und mittels "Löschen" entfernt.

Der Winkelabstand zwischen den einzelnen Kurbelstellungen ergibt sich aus folgender Rechnung: $\alpha = \frac{1 Umdrehung}{Anzahl Kurbelstellungen} = \frac{360^{\circ}}{12} = \underline{30^{\circ}}$.

Die weiteren durchzuführenden Aktionen sind folgende:

Rechtsklick auf den Gelenkpunkt 3 (= B / Schwingenzapfen) und Einstellungen gemäß
 Abb. 7 vornehmen (Häckchen bei "Plot" unter Absolut → VAbs hinzufügen)

X-Richtung Calc Plot Calc Plot Position Xx Geschwindigkeit Vx F Beschleunigung Ax Y-Richtung Position Xy CY-Richtung V-Richtung V-Richtung Kraft Vy Geschwindigkeit Vy Beschleunigung Ay Kraft Fy	X-axis	
Calc Plot		
Image: Position Xx Image: Verschiebung Ux Image: Position Vx Image: Position Xy		
↓ Verschiebung Ux ↓ Geschwindigkeit Vx ↓ Beschleunigung Ax ↓ Kraft Fx Y-Richtung Y-Richtung ↓ Position Xy ↓ Verschiebung Uy ↓ Geschwindigkeit Vy ↓ Gescheunigung Ay ↓ Kraft Fy		
Image: Geschwindigkeit Vx Image: Beschleunigung Ax Image: Fx Fx Y-Richtung Y-Richtung Image: Image: Fx Verschiebung Image:		
□ Beschleunigung Ax □ Kraft Fx Y-Richtung Y □ Position Xy □ Verschiebung Uy □ Geschwindigkeit Vy □ Beschleunigung Ay □ Kraft Fy		_
Kraft Fx Y-Richtung Position Xy Verschiebung Uy Geschwindigkeit Vy Beschleunigung Ay Kraft		_
Y-Richtung ▼ Position Xy ■ Verschiebung Uy ▼ Geschwindigkeit Vy ■ Beschleunigung Ay ■ Kraft Fy		
Image: Formula Xy Image: Formula Uy Image: Formula Uy Image: Formula Xy Image: Formula Ay Image: Formula Fy		
☐ ☐ Beschleunigung _{Ay} ☐ ☐ Kraft Fy		
F Kraft Fy		
a la contra de l		
Absolut		
Geschwindigkeit VAbs		
F Beschleunigung AAbs		
FAbs		
Bahnkurve IITot		
Curve radius BCur		
F Krümmung BCur		

Abb. 7: Einstellung für Anzeige der Geschwindigkeit am Schwingenzapfen

Zur Ermittlung der Daten fordert SAM" nun zur Durchführung einer neuen Analyse auf.

2. Symbol für Analyse anklicken, hier sind verschiedene Auswahlmöglichkeiten (im Moment nicht relevant), "OK" anklicken → Graph wird erstellt

In den Gelenkpunkteigenschaften von Punkt 3 kann unter "Wiedergabe", zusätzlich der Geschwindigkeitshodograph des Schwingenzapfens angezeigt werden. (erneute Analyse erforderlich)

Abbildung 8 zeigt die resultierende Bildschirmausgabe.

Abb. 8: Ergebnisdarstellung von Teilaufgabe 1 in SAM

Nach erfolgter Analyse kann durch Anklicken von 🛣 (oder mittels "F2") eine Animation des Getriebes gestartet bzw. auch wieder beendet werden.

 Exportieren der Diagrammwerte in Excel-Tabelle zur besseren Verarbeitung der Daten mittels Menüleiste → "Ergebnisse" → Exportieren → OK → Dateiformat "*.xls" wählen 4. Bearbeitung der Tabelle in Excel → Einfügen der Winkelwerte (0°-360°) & "." durch "," ersetzen → siehe Tabelle 1

Nr:	Winkel	Zeit	V_abs(3)
[-]	[°]	[s]	[mm/s]
0	0	0,000	0,000
1	30	0,083	122,571
2	60	0,167	188,059
3	90	0,250	191,548
4	120	0,333	141,520
5	150	0,417	67,487
6	180	0,500	0,004
7	210	0,583	58,239
8	240	0,667	118,544
9	270	0,750	182,606
10	300	0,833	211,306
11	330	0,917	140,485
12	360	1,000	0,000

Tab. 1: Ergebnisse Teilaufgabe 1 in Excel überführt

5. Erstellung des Diagramms mit Excel \rightarrow Abbildung 9

Abb. 9: Geschwindigkeitsverlauf des Schwingenzapfens in Abhängigkeit vom Winkel

3.2 Verlauf von v über t

In dieser Aufgabe soll der Verlauf von v über t für den abgerollten Kurbelkreis, also einer vollen Umdrehung, am Schwingzapfen ermittelt werden. Dieser Verlauf ist gleich dem bereits in der vorherigen Aufgabe ermittelten Geschwindigkeitsverlauf, da dort auch eine ganze Umdrehung betrachtet wird. Der Unterschied besteht lediglich in der Beschriftung der Abszisse (Zeit statt Winkel). Zur genaueren Darstellung kann das Intervall in den Antriebseinstellungen erhöht werden, um kleinere Schrittweiten zu realisieren:

- 1. Antriebseinstellungen aufrufen (STRG+M)
- 2. "Intervalle" auf 36 ändern \rightarrow 10°- Schritte
- 3. neue Antriebsbewegung "hinzufügen"; alte Antriebsbewegung löschen
- 4. Geschwindigkeitsplot im Gelenkpunkt 3 aktivieren (siehe Punkt 1., Kap. 3.1)
- 5. neue Analyse durchführen \rightarrow
- 6. Ergebnisse in Excel exportieren \rightarrow Diagramm erstellen (*v* über *t*) \rightarrow Abbildung 10

Abb. 10: Verlauf von v über t

3.3 Verlauf von *a* über *t*

Es soll der Verlauf von *a* über *t* am Schwingenzapfen ermittelt werden. Die Vorgehensweise ist hierbei analog zur vorherigen Aufgabe, es wird lediglich die Beschleunigung statt der Geschwindigkeit ausgegeben. Der Ablauf ist wie folgt:

- bei Gelenkpunkt-Eigenschaften des Punktes 3 Geschwindigkeits-Plot entfernen: Rechtsklick auf Gelenkpunkt 3 → Gelenkpunkt-Eigenschaften → Graphauswahl → Häckchen unter "Absolut" bei Geschwindigkeit rausnehmen
- Beschleunigung am Schwingenzapfen ausgeben lassen:
 Rechtsklick auf Gelenkpunkt 3 → Gelenkpunkt-Eigenschaften → Graphauswahl →
 Häckchen unter "Absolut" bei Beschleunigung reinsetzen
- 3. Analyse durchführen
- 4. Ergebnisse in Excel exportieren \rightarrow Diagramm erstellen (*a* über *t*) \rightarrow Abbildung 11

Abb. 11: Verlauf von *a* über *t*

3.4 v_{max} & a_{max} für n = 2,5 s⁻¹ und Getriebe in 2,5-facher Größe

Zunächst wird ein neues Getriebe in SAM gezeichnet, analog zu Gliederungspunkt 2.2, aber 2,5-fach vergrößert.

Element.	Länge in mm			
Element	normale Größe	2,5fache Größe		
Kurbel	30	75		
Koppel	75	187,5		
Schwinge	115,9	289,75		

Es ergeben sich folgende Werte für die einzelnen Elementlängen (-radien):

Tab. 2: Größenänderung der einzelnen Elemente

Der Antrieb muss jetzt ebenfalls geändert werden. Es ergibt sich bei Betrachtung einer Umdrehung (360°) eine Laufzeit von: $t_{neu} = \frac{n_1}{n_2} \cdot t_{alt} = \frac{1s^{-1}}{2,5s^{-1}} \cdot 1s = \underline{0,4s}$. Die Intervalle (36) können beibehalten werde.

Es werden, wie in Kapitel 3.2 und 3.3 beschrieben, der Geschwindigkeits- sowie der Beschleunigungsverlauf ermittelt. Hierbei ergeben sich folgende Diagramme:

Abb. 12: Geschwindigkeitsverlauf für $n = 2,5 \text{ s}^{-1}$ und Getriebe in 2,5-facher Größe

Abb. 13: Beschleunigungsverlauf für n = 2.5 s^{-1} und Getriebe in 2.5-facher Größe

Es ist deutlich zu erkennen, dass sich die prinzipiellen Verläufe nicht ändern.

Mithilfe des SAM-Diagrammes können die maximalen Geschwindigkeiten und Beschleunigungen, mit den dazugehörigen Zeiten, direkt aus dem Graph abgelesen werden. Dazu muss man lediglich den Mauszeiger auf die Maximalwerte positionieren.

Die maximale Geschwindigkeit V_{max} beträgt nun ~1320 mm/s gegenüber 211 mm/s in der normalen Ausführung (Faktor: 6,3).

Die maximale Beschleunigung beträgt ~ 27485 mm/s² im Vergleich zu 1759 mm/s² bei der Ausgangskonfiguration (Faktor: 15,6).

3.5 Ermittlung der Größtwerte des Ablenkwinkels a

Die Größtwerte des Ablenkwinkels α treten immer dann auf, wenn sich das Antriebsglied (Kurbel) in einer sogenannten Steglage befindet. Das bedeutet, es liegt auf der Gestellgeraden. Abbildung 14 verdeutlicht dies anhand einer mit AutoCAD erstellten Zeichnung.

Abb. 14: Gestellgerade und dazugehörige Getriebelagen

Es wurde hierfür einfach eine Gerade gezogen, welche durch beide Lager verläuft. Danach wurden die beiden Kurbellagen (Lage 1 + 2) auf dieser Geraden gezeichnet. Die Schnittpunkte der Koppel mit der Bewegungsbahn der Schwinge, wurden mit Hilfe von Kreisen (r = Länge Koppel) ermittelt.

Nach diesem Schritt werden Tangenten an die Bewegungsbahn der Schwinge, in den Schnittpunkten mit der Koppel, angelegt. Dazu kann man den Konstruktionslinientyp "Lot auf Linie durch 2 Punkte" verwenden. Hierbei wird zuerst der Punkt auf der Bewegungsbahn der Schwinge und danach der Punkt im Lager B_0 (siehe Abb. 3) gewählt. Der erste maximale Ablenkwinkel $\alpha_{max.1}$ befindet sich zwischen der Koppel von Lage 1 und der dazugehörigen Tangente (t_{a1}) an der Bewegungsbahn der Schwinge.

Den zweiten maximalen Ablenkwinkel $\alpha_{max.2}$ findet man zwischen der verlängerten Koppel der zweiten Getriebelage und der dort anliegenden Tangente (t_{a2}). Dies wird zum besseren Verständnis in Abbildung 15 dargestellt.

Abb. 15: Lage der maximalen Ablenkwinkel $\alpha_{max,1}$ & $\alpha_{max,2}$

Die beiden ermittelten maximalen Ablenkwinkel sind gleich und betragen <u>27,7</u>°. Damit wird die Kenntnis bestätigt, dass zentrische Kurbelschwingen (annähernd) gleiche maximale Ablenkwinkel besitzen. Auf Grund dieser Tatsache zählen sie zu den übertragungsgünstigen Getrieben.